dcmri.aif_tristan_rat#
- dcmri.aif_tristan_rat(t, BAT=276.0, duration=30) ndarray [source]#
Population AIF model for rats measured with a standard dose of gadoxetate.
- Parameters:
- Returns:
Blood concentrations in M for each time point in t. If t is a scalar, the return value is a scalar too.
- Return type:
np.ndarray
References
Melillo N, Scotcher D, Kenna JG, Green C, Hines CDG, Laitinen I, et al. Use of In Vivo Imaging and Physiologically-Based Kinetic Modelling to Predict Hepatic Transporter Mediated Drug-Drug Interactions in Rats. Pharmaceutics 2023;15(3):896.
Gunwhy, E. R., & Sourbron, S. (2023). TRISTAN-RAT (v3.0.0). Zenodo
Example:
>>> import matplotlib.pyplot as plt >>> import numpy as np >>> import dcmri as dc
Create an array of time points over 30 minutes
>>> t = np.arange(0, 30*60, 0.1)
Generate the rat input function for these time points:
>>> cb = dc.aif_tristan_rat(t)
Plot the result:
>>> plt.plot(t/60, 1000*cb, 'r-') >>> plt.title('TRISTAN rat AIF') >>> plt.xlabel('Time (min)') >>> plt.ylabel('Blood concentration (mM)') >>> plt.show()
(
Source code
,png
,hires.png
,pdf
)
Examples using dcmri.aif_tristan_rat
#
Preclinical - repeat dosing effects on liver function
Preclinical - reproducibility of hepatocellular function
Preclinical - effect on liver function of 6 test drugs