Source code for dcmri.pk_lib

import numpy as np

import dcmri.pk as pk



[docs] def aif_parker(t, BAT: float = 0.0) -> np.ndarray: """Population AIF model as defined by `Parker et al (2006) <https://onlinelibrary.wiley.com/doi/full/10.1002/mrm.21066>`_ Args: t (array_like): time points in units of sec. BAT (float, optional): Time in seconds before the bolus arrives. Defaults to 0 sec (no delay). Returns: np.ndarray: Concentrations in M for each time point in t. If t is a scalar, the return value is a scalar too. References: Adapted from a contribution by the QBI lab of the University of Manchester to the `OSIPI code repository <https://github.com/OSIPI/DCE-DSC-MRI_CodeCollection>`_. Example: >>> import numpy as np >>> import dcmri as dc Create an array of time points covering 20sec in steps of 1.5sec, which rougly corresponds to the first pass of the Paeker AIF: >>> t = np.arange(0, 20, 1.5) Calculate the Parker AIF at these time points, and output the result in units of mM: >>> 1000*dc.aif_parker(t) array([0.08038467, 0.23977987, 0.63896354, 1.45093969, 2.75255937, 4.32881325, 5.6309778 , 6.06793854, 5.45203828, 4.1540079 , 2.79568217, 1.81335784, 1.29063036, 1.08751679]) """ # Check input types if not np.isscalar(BAT): raise ValueError('BAT must be a scalar') # Convert from secs to units used internally (mins) t_offset = np.array(t) / 60 - BAT / 60 # A1/(SD1*sqrt(2*PI)) * exp(-(t_offset-m1)^2/(2*var1)) # A1 = 0.833, SD1 = 0.055, m1 = 0.171 gaussian1 = 5.73258 * np.exp( -1.0 * (t_offset - 0.17046) * (t_offset - 0.17046) / (2.0 * 0.0563 * 0.0563)) # A2/(SD2*sqrt(2*PI)) * exp(-(t_offset-m2)^2/(2*var2)) # A2 = 0.336, SD2 = 0.134, m2 = 0.364 gaussian2 = 0.997356 * np.exp( -1.0 * (t_offset - 0.365) * (t_offset - 0.365) / (2.0 * 0.132 * 0.132)) # alpha*exp(-beta*t_offset) / (1+exp(-s(t_offset-tau))) # alpha = 1.064, beta = 0.166, s = 37.772, tau = 0.482 sigmoid = 1.050 * np.exp(-0.1685 * t_offset) / \ (1.0 + np.exp(-38.078 * (t_offset - 0.483))) pop_aif = gaussian1 + gaussian2 + sigmoid return pop_aif / 1000 # convert to M
[docs] def aif_tristan_rat(t, BAT=4.6 * 60, duration=30) -> np.ndarray: """Population AIF model for rats measured with a standard dose of gadoxetate. Args: t (array_like): time points in units of sec. BAT (float, optional): Time in seconds before the bolus arrives. Defaults to 4.6 min. duration (float, optional): Duration of the injection. Defaults to 30s. Returns: np.ndarray: Blood concentrations in M for each time point in t. If t is a scalar, the return value is a scalar too. References: - Melillo N, Scotcher D, Kenna JG, Green C, Hines CDG, Laitinen I, et al. Use of In Vivo Imaging and Physiologically-Based Kinetic Modelling to Predict Hepatic Transporter Mediated Drug-Drug Interactions in Rats. `Pharmaceutics 2023;15(3):896 <https://doi.org/10.3390/pharmaceutics15030896>`_. - Gunwhy, E. R., & Sourbron, S. (2023). TRISTAN-RAT (v3.0.0). `Zenodo <https://doi.org/10.5281/zenodo.8372595>`_ Example: .. plot:: :include-source: >>> import matplotlib.pyplot as plt >>> import numpy as np >>> import dcmri as dc Create an array of time points over 30 minutes >>> t = np.arange(0, 30*60, 0.1) Generate the rat input function for these time points: >>> cb = dc.aif_tristan_rat(t) Plot the result: >>> plt.plot(t/60, 1000*cb, 'r-') >>> plt.title('TRISTAN rat AIF') >>> plt.xlabel('Time (min)') >>> plt.ylabel('Blood concentration (mM)') >>> plt.show() """ # Constants dose = 0.0075 # mmol Fb = 2.27 / 60 # mL/sec # https://doi.org/10.1021/acs.molpharmaceut.1c00206 # (Changed from 3.61/60 on 07/03/2022) # From Brown the cardiac output of rats is # 110.4 mL/min (table 3-1) ~ 6.62L/h # From table 3-4, sum of hepatic artery and portal vein # blood flow is 17.4% of total cardiac output ~ 1.152 L/h # Mass of liver is 9.15g, with density of 1.08 kg/L, # therefore ~8.47mL # 9.18g refers to the whole liver, i.e. intracellular tissue # + extracellular space + blood # Dividing 1.152L/h for 8.47mL we obtain ~2.27 mL/min/mL liver # Calculation done with values in Table S2 of our article # lead to the same results Hct = 0.418 # Cremer et al, J Cereb Blood Flow Metab 3, 254-256 (1983) VL = 8.47 # mL # Scotcher et al 2021, DOI: 10.1021/acs.molpharmaceut.1c00206 # Supplementary material, Table S2 GFR = 1.38 / 60 # mL/sec (=1.38mL/min) # https://doi.org/10.1152/ajprenal.1985.248.5.F734 P = 0.172 # mL/sec # Estimated from rat repro study data using PBPK model # 0.62 L/h # Table 3 in Scotcher et al 2021 # DOI: 10.1021/acs.molpharmaceut.1c00206 VB = 15.8 # mL # 0.06 X BW + 0.77, Assuming body weight (BW) = 250 g # Lee and Blaufox. Blood volume in the rat. # J Nucl Med. 1985 Jan;26(1):72-6. VE = 30 # mL # All tissues, including liver. # Derived from Supplementary material, Table S2 # Scotcher et al 2021 # DOI: 10.1021/acs.molpharmaceut.1c00206 E = 0.4 # Liver extraction fraction, estimated from TRISTAN data # Using a model with free E, then median over population of controls # Derived constants VP = (1 - Hct) * VB Fp = (1 - Hct) * Fb K = GFR + E * Fp * VL # mL/sec # Influx in mmol/sec J = np.zeros(np.size(t)) Jmax = dose / duration # mmol/sec J[(t > BAT) & (t < BAT + duration)] = Jmax # Model parameters TP = VP / (K + P) TE = VE / P E = P / (K + P) Jp = pk.flux_2cxm(J, [TP, TE], E, t) cp = Jp / K return cp * (1 - Hct)