from copy import deepcopy
import matplotlib.pyplot as plt
import numpy as np
import dcmri.ui as ui
import dcmri.lib as lib
import dcmri.sig as sig
import dcmri.utils as utils
import dcmri.pk as pk
import dcmri.pk_aorta as pk_aorta
import dcmri.kidney as kidney
[docs]
class AortaKidneys(ui.Model):
"""Joint model for signals from aorta and both kidneys.
This model uses a whole body model to simultaneously predict
signals in aorta and kidneys (see :ref:`whole-body-tissues`).
See Also:
`Aorta`, `Kidney`
Args:
organs (str, optional): Model for the organs in the whole-body
model. The options are 'comp' (one compartment) and '2cxm'
(two-compartment exchange). Defaults to 'comp'.
heartlung (str, optional): Model for the heart-lung system in
the whole-body model. Options are 'pfcomp' (plug-flow
compartment) or 'chain'. Defaults to 'pfcomp'.
kidneys (str, optional): Model for the kidneys. Options are
'2CF' (Two-compartment filtration) and 'HF' (High-flow).
Defaults to '2CF'.
sequence (str, optional): imaging sequence model. Possible
values are 'SS' (steady-state), 'SR' (saturation-recovery),
'SSI' (steady state with inflow correction) and 'lin'
(linear). Defaults to 'SS'.
agent (str, optional): Generic name of the contrast agent
injected. Defaults to 'gadoterate'.
params (dict, optional): values for the model parameters,
specified as keyword parameters. Defaults are used for any
that are not provided. See table
:ref:`AortaKidneys-defaults` for a list of parameters and
their default values.
Notes:
In the table below, if **Bounds** is None, the parameter is fixed
during training. Otherwise it is allowed to vary between the
bounds given.
.. _AortaKidneys-defaults:
.. list-table:: AortaKidneys parameters.
:widths: 5 10 5 5 5 10
:header-rows: 1
* - Parameter
- Description
- Value
- Unit
- Bounds
- Usage
* - **General**
-
-
-
-
-
* - dt
- Prediction time step
- 0.25
- sec
- None
- Always
* - tmax
- Maximum time predicted
- 120
- sec
- None
- Always
* - dose_tolerance
- Stopping criterion whole body model
- 0.1
-
- None
- Always
* - t0
- Baseline duration
- 0
-
- None
- Always
* - field_strength
- B0-field
- 3
- T
- None
- Always
* - **Injection**
-
-
-
-
-
* - weight
- Subject weight
- 70
- kg
- None
- Always
* - dose
- Contrast agent dose
- 0.0125
- mL/kg
- None
- Always
* - rate
- Contrast agent injection rate
- 1
- mL/kg
- None
- Always
* - **Sequence**
-
-
-
-
-
* - TR
- Repetition time
- 0.005
- sec
- None
- sequence in ['SS', 'SSI']
* - FA
- Flip angle
- 15
- deg
- None
- sequence in ['SR', 'SS', 'SSI']
* - TC
- Time to k-space center
- 0.1
- sec
- None
- sequence == 'SR'
* - TS
- Sampling duration
- 0
- sec
- None
- Always
* - TF
- Inflow time
- 0
- sec
- None
- sequence == 'SSI'
* - **Aorta**
-
-
-
-
-
* - BAT
- Bolus arrival time
- 60
- sec
- [0, inf]
- Always
* - CO
- Cardiac output
- 100
- mL/sec
- [0, 300]
- Always
* - Thl
- Heart-lung transit time
- 10
- sec
- [0, 30]
- Always
* - Dhl
- Heart-lung dispersion
- 0.2
-
- [0.05, 0.95]
- heartlung in ['pfcomp', 'chain']
* - To
- Organs transit time
- 20
- sec
- [0, 60]
- Always
* - Eo
- Organs extraction fraction
- 0.15
-
- [0, 0.5]
- organs == '2cxm'
* - Toe
- Organs extracellular transit time
- 120
- sec
- [0, 800]
- organs == '2cxm'
* - Eb
- Body extraction fraction
- 0.05
-
- [0.01, 0.15]
- Always
* - R10a
- Arterial precontrast R1
- 0.7
- /sec
- None
- Always
* - S0a
- Arterial signal scale factor
- 1
- a.u.
- None
- Always
* - **Kidneys**
-
-
-
-
-
* - H
- Hematocrit
- 0.45
-
- None
- Always
* - RPF
- Renal plasma flow
- 20
- mL/sec
- [0, 100]
- Always
* - DRF
- Differential renal function
- 0.5
-
- [0, 1.0]
- Always
* - DRPF
- Differential renal plasma flow
- 0.5
-
- [0, 1.0]
- kidneys == '2CF'
* - FF
- Filtration fraction
- 0.1
-
- [0, 0.3]
- agent in ['gadoxetate', 'gadobenate']
* - **Left kidney**
-
-
-
-
-
* - Ta_lk
- Left kidney arterial delay
- 0
- sec
- [0, 3]
- Always
* - vp_lk
- Left kidney plasma volume
- 0.15
- mL/cm3
- [0, 0.3]
- Always
* - Tt_lk
- Left kidney tubular transit time
- 120
- sec
- [0, inf]
- Always
* - R10_lk
- Left kidney precontrast R1
- 0.65
- 1/sec
- None
- Always
* - S0_lk
- Left kidney signal scale factor
- 1.0
- a.u.
- [0, inf]
- Always
* - vol_lk
- Left kidney volume
- 150
- cm3
- None
- Always
* - **Right kidney**
-
-
-
-
-
* - Ta_rk
- Right kidney arterial delay
- 0
- sec
- [0, 3]
- Always
* - vp_rk
- Right kidney plasma volume
- 0.15
- mL/cm3
- [0, 0.3]
- Always
* - Tt_rk
- Right kidney tubular transit time
- 120
- sec
- [0, inf]
- Always
* - R10_rk
- Right kidney precontrast R1
- 0.65
- /sec
- None
- Always
* - S0_rk
- Right kidney signal scale factor
- 1.0
- a.u.
- [0, inf]
- Always
* - vol_rk
- Right kidney volume
- 150
- cm3
- None
- Always
Example:
Use the model to fit minipig data with inflow correction:
.. plot::
:include-source:
:context: close-figs
>>> import numpy as np
>>> import dcmri as dc
Read the dataset:
>>> datafile = dc.fetch('minipig_renal_fibrosis')
>>> rois, pars = dc.read_dmr(datafile, nest=True, valsonly=True)
>>> rois, pars = rois['Pig']['Test'], pars['Pig']['Test']
Create an array of time points:
>>> time = pars['TS'] * np.arange(len(rois['Aorta']))
Initialize the tissue:
>>> aorta_kidneys = dc.AortaKidneys(
... sequence='SSI',
... heartlung='chain',
... organs='comp',
... agent="gadoterate",
... dt=0.25,
... field_strength=pars['B0'],
... weight=pars['weight'],
... dose=pars['dose'],
... rate=pars['rate'],
... R10a=1/dc.T1(pars['B0'], 'blood'),
... R10_lk=1/dc.T1(pars['B0'], 'kidney'),
... R10_rk=1/dc.T1(pars['B0'], 'kidney'),
... vol_lk=85,
... vol_rk=85,
... TR=pars['TR'],
... FA=pars['FA'],
... TS=pars['TS'],
... CO=60,
... t0=15,
... )
Define time and signal data
>>> t = (time, time, time)
>>> signal = (rois['Aorta'], rois['LeftKidney'], rois['RightKidney'])
Train the system to the data:
>>> aorta_kidneys.train(t, signal)
Plot the reconstructed signals and concentrations:
>>> aorta_kidneys.plot(t, signal)
Print the model parameters:
>>> aorta_kidneys.print_params(round_to=4)
--------------------------------
Free parameters with their stdev
--------------------------------
Bolus arrival time (BAT): 16.7422 (0.2853) sec
Inflow time (TF): 0.2801 (0.0133) sec
Cardiac output (CO): 72.762 (12.4426) mL/sec
Heart-lung mean transit time (Thl): 16.2249 (0.3069) sec
Organs blood mean transit time (To): 14.3793 (1.2492) sec
Body extraction fraction (Eb): 0.0751 (0.0071)
Heart-lung dispersion (Dhl): 0.0795 (0.0041)
Renal plasma flow (RPF): 3.3489 (0.7204) mL/sec
Differential renal function (DRF): 0.9085 (0.0212)
Differential renal plasma flow (DRPF): 0.812 (0.0169)
Left kidney arterial mean transit time (Ta_lk): 0.6509 (0.2228) sec
Left kidney plasma volume (vp_lk): 0.099 (0.0186) mL/cm3
Left kidney tubular mean transit time (Tt_lk): 46.9705 (3.3684) sec
Right kidney arterial mean transit time (Ta_rk): 1.4206 (0.2023) sec
Right kidney plasma volume (vp_rk): 0.1294 (0.0175) mL/cm3
Right kidney tubular mean transit time (Tt_rk): 4497.8301 (39890.3818) sec
Aorta signal scaling factor (S0a): 4912.776 (254.2363) a.u.
----------------------------
Fixed and derived parameters
----------------------------
Filtration fraction (FF): 0.0812
Glomerular Filtration Rate (GFR): 0.2719 mL/sec
Left kidney plasma flow (RPF_lk): 2.7194 mL/sec
Right kidney plasma flow (RPF_rk): 0.6295 mL/sec
Left kidney glomerular filtration rate (GFR_lk): 0.247 mL/sec
Right kidney glomerular filtration rate (GFR_rk): 0.0249 mL/sec
Left kidney plasma flow (Fp_lk): 0.032 mL/sec/cm3
Left kidney plasma mean transit time (Tp_lk): 2.838 sec
Left kidney vascular mean transit time (Tv_lk): 3.0958 sec
Left kidney tubular flow (Ft_lk): 0.0029 mL/sec/cm3
Left kidney filtration fraction (FF_lk): 0.0908
Left kidney extraction fraction (E_lk): 0.0833
Right kidney plasma flow (Fp_rk): 0.0074 mL/sec/cm3
Right kidney plasma mean transit time (Tp_rk): 16.8121 sec
Right kidney vascular mean transit time (Tv_rk): 17.4762 sec
Right kidney tubular flow (Ft_rk): 0.0003 mL/sec/cm3
Right kidney filtration fraction (FF_rk): 0.0395
Right kidney extraction fraction (E_rk): 0.038
"""
def __init__(
self,
organs='comp',
heartlung='pfcomp',
kidneys='2CF',
sequence='SS',
agent='gadoterate',
**params,
):
# Check configuration
if organs not in ['comp','2cxm']:
raise ValueError(
f"{organs} is not a valid model for the organs. "
"Current options are 'comp' and '2cxm'."
)
if heartlung not in ['pfcomp', 'chain']:
raise ValueError(
f"{heartlung} is not a valid heart-lung system. "
"Current options are 'pfcomp' and 'chain'."
)
if kidneys not in ['2CF', 'HF']:
raise ValueError(
f"Kinetic model {kidneys} is not available."
)
if sequence not in ['SS', 'SR', 'SSI', 'lin']:
raise ValueError(
f"Sequence {sequence} is not available."
)
# Set configuration
self.sequence = sequence
self.organs = organs
self.heartlung = heartlung
self.kidneys = kidneys
self.agent = agent
# Set defaults
self._set_defaults(**params)
# For SSI, S0 needs to be free because TF affects the baseline
if self.sequence == 'SSI':
self.free['S0a'] = [0, np.inf]
# Internal flag
self._predict = None
def _params(self):
return PARAMS_AORTA | PARAMS_KIDNEYS | PARAMS_DERIVED
def _model_pars(self):
# General
pars = ['dt', 'tmax', 'dose_tolerance', 't0', 'field_strength']
# Injection
pars += ['weight', 'dose', 'rate', 'BAT']
# Sequence
pars += ['TS']
if self.sequence == 'SR':
pars += ['TC', 'FA']
elif self.sequence=='SS':
pars += ['TR', 'FA']
elif self.sequence=='SSI':
pars += ['TF', 'TR', 'FA']
# Aorta
pars += ['CO', 'Thl', 'To', 'Eb', 'R10a', 'S0a']
if self.heartlung == 'pfcomp':
pars += ['Dhl']
elif self.heartlung == 'chain':
pars += ['Dhl']
if self.organs=='2cxm':
pars += ['Toe', 'Eo']
# Kidneys
pars += ['RPF', 'DRF', 'H']
if self.agent in ['gadoxetate', 'gadobenate']:
pars += ['FF']
if self.kidneys == '2CF':
pars += ['DRPF']
pars += ['Ta_lk', 'vol_lk', 'vp_lk', 'Tt_lk', 'R10_lk']
pars += ['Ta_rk', 'vol_rk', 'vp_rk', 'Tt_rk', 'R10_rk']
return pars
def _par_values(self, export=False):
if export:
discard = [
'dt', 'tmax', 't0', 'weight', 'dose',
'rate', 'field_strength', 'dose_tolerance', 'R10a',
'TS' , 'TC', 'TR', 'FA',
'R10_lk', 'R10_rk', 'H',
'vol_rk', 'vol_lk',
]
pars = self._par_values()
return {p: pars[p] for p in pars if p not in discard}
pars = self._model_pars()
p = {par: getattr(self, par) for par in pars}
# Kidneys
if 'FF' not in p:
p['FF'] = _div(p['Eb'], 1-p['Eb'])
if {'RPF', 'FF'}.issubset(p):
p['GFR'] = p['RPF'] * p['FF']
if {'DRPF', 'RPF'}.issubset(p):
p['RPF_lk'] = p['DRPF'] * p['RPF']
p['RPF_rk'] = (1 - p['DRPF']) * p['RPF']
if {'DRF', 'GFR'}.issubset(p):
p['GFR_lk'] = p['DRF'] * p['GFR']
p['GFR_rk'] = (1 - p['DRF']) * p['GFR']
# Kidney LK
if {'RPF_lk', 'vol_lk'}.issubset(p):
p['Fp_lk'] = _div(p['RPF_lk'], p['vol_lk'])
if {'RPF_lk', 'GFR_lk', 'vp_lk', 'vol_lk'}.issubset(p):
p['Tp_lk'] = _div(p['vp_lk'] * p['vol_lk'], p['RPF_lk']+p['GFR_lk'])
if {'RPF_lk', 'vp_lk', 'vol_lk'}.issubset(p):
p['Tv_lk'] = _div(p['vp_lk'] * p['vol_lk'], p['RPF_lk'])
if {'GFR_lk', 'vol_lk'}.issubset(p):
p['Ft_lk'] = _div(p['GFR_lk'], p['vol_lk'])
if {'GFR_lk', 'RPF_lk'}.issubset(p):
p['FF_lk'] = _div(p['GFR_lk'], p['RPF_lk'])
p['E_lk'] = _div(p['GFR_lk'], p['GFR_lk']+p['RPF_lk'])
# Kidney RK
if {'RPF_rk', 'vol_rk'}.issubset(p):
p['Fp_rk'] = _div(p['RPF_rk'], p['vol_rk'])
if {'RPF_rk', 'GFR_rk', 'vp_rk', 'vol_rk'}.issubset(p):
p['Tp_rk'] = _div(p['vp_rk'] * p['vol_rk'], p['RPF_rk']+p['GFR_rk'])
if {'RPF_rk', 'vp_rk', 'vol_rk'}.issubset(p):
p['Tv_rk'] = _div(p['vp_rk'] * p['vol_rk'], p['RPF_rk'])
if {'GFR_rk', 'vol_rk'}.issubset(p):
p['Ft_rk'] = _div(p['GFR_rk'], p['vol_rk'])
if {'GFR_rk', 'RPF_rk'}.issubset(p):
p['FF_rk'] = _div(p['GFR_rk'], p['RPF_rk'])
p['E_rk'] = _div(p['GFR_rk'], p['GFR_rk']+p['RPF_rk'])
return p
def _conc_aorta(self) -> np.ndarray:
if self.organs == 'comp':
organs = ['comp', (self.To,)]
elif self.organs=='2cxm':
organs = ['2cxm', ([self.To, self.Toe], self.Eo)]
if self.heartlung == 'comp':
heartlung = ['comp', (self.Thl,)]
elif self.heartlung == 'pfcomp':
heartlung = ['pfcomp', (self.Thl, self.Dhl)]
elif self.heartlung == 'chain':
heartlung = ['chain', (self.Thl, self.Dhl)]
self.t = np.arange(0, self.tmax, self.dt)
conc = lib.ca_conc(self.agent)
Ji = lib.ca_injection(
self.t, self.weight, conc, self.dose, self.rate, self.BAT,
)
Jb = pk_aorta.flux_aorta(
Ji, E=self.Eb, heartlung=heartlung, organs=organs,
dt=self.dt, tol=self.dose_tolerance,
)
self.ca = Jb/self.CO
return self.t, self.ca
def _relax_aorta(self):
t, cb = self._conc_aorta()
rb = lib.relaxivity(self.field_strength, 'blood', self.agent)
return t, self.R10a + rb*cb
def _predict_aorta(self, xdata: np.ndarray) -> np.ndarray:
tacq = xdata[1]-xdata[0]
self.tmax = max(xdata)+tacq+self.dt
if self.TS is not None:
self.tmax += self.TS
t, R1a = self._relax_aorta()
if self.sequence == 'SR':
signal = sig.signal_free(self.S0a, R1a, self.TC, self.FA)
elif self.sequence=='SS':
signal = sig.signal_ss(self.S0a, R1a, self.TR, self.FA)
elif self.sequence=='SSI':
signal = sig.signal_spgr(self.S0a, R1a, self.TF, self.TR, self.FA, n0=1)
elif self.sequence == 'lin':
signal = sig.signal_lin(self.S0a, R1a)
return utils.sample(xdata, t, signal, self.TS)
def _conc_kidneys(self, sum=True):
if self.agent in ['gadoxetate', 'gadobenate']:
FF = self.FF
else:
FF = self.Eb/(1-self.Eb)
t = self.t
ca_lk = pk.flux(
self.ca, self.Ta_lk, t=self.t, dt=self.dt, model='plug',
)
ca_rk = pk.flux(
self.ca, self.Ta_rk, t=self.t, dt=self.dt, model='plug',
)
GFR = FF * self.RPF
Ft_lk = self.DRF * GFR / self.vol_lk
Ft_rk = (1-self.DRF) * GFR / self.vol_rk
if self.kidneys == '2CF':
Fp_lk = self.DRPF * self.RPF / self.vol_lk
C_lk = kidney.conc_kidney(
ca_lk / (1-self.H),
Fp_lk, self.vp_lk, Ft_lk, self.Tt_lk,
t=self.t, dt=self.dt, sum=sum, kinetics='2CF',
)
Fp_rk = (1-self.DRPF) * self.RPF / self.vol_rk
C_rk = kidney.conc_kidney(
ca_rk / (1-self.H),
Fp_rk, self.vp_rk, Ft_rk, self.Tt_rk,
t=self.t, dt=self.dt, sum=sum, kinetics='2CF',
)
if self.kidneys == 'HF':
C_lk = kidney.conc_kidney(
ca_lk / (1-self.H),
self.vp_lk, Ft_lk, self.Tt_lk,
t=self.t, dt=self.dt, sum=sum, kinetics='HF',
)
C_rk = kidney.conc_kidney(
ca_rk / (1-self.H),
self.vp_rk, Ft_rk, self.Tt_rk,
t=self.t, dt=self.dt, sum=sum, kinetics='HF',
)
return t, C_lk, C_rk
def _relax_kidneys(self):
t, Clk, Crk = self._conc_kidneys()
rb = lib.relaxivity(self.field_strength, 'blood', self.agent)
return t, self.R10_lk + rb*Clk, self.R10_rk + rb*Crk
def _predict_kidneys(self, xdata: tuple[np.ndarray, np.ndarray]) -> tuple[np.ndarray, np.ndarray]:
t, R1_lk, R1_rk = self._relax_kidneys()
if self.sequence == 'SR':
signal_lk = sig.signal_spgr(
self.S0_lk, R1_lk, self.TC, self.TR, self.FA,
)
signal_rk = sig.signal_spgr(
self.S0_rk, R1_rk, self.TC, self.TR, self.FA,
)
elif self.sequence in ['SS', 'SSI']:
signal_lk = sig.signal_ss(self.S0_lk, R1_lk, self.TR, self.FA)
signal_rk = sig.signal_ss(self.S0_rk, R1_rk, self.TR, self.FA)
elif self.sequence == 'lin':
signal_lk = sig.signal_lin(self.S0_lk, R1_lk)
signal_rk = sig.signal_lin(self.S0_rk, R1_rk)
return (
utils.sample(xdata[0], t, signal_lk, self.TS),
utils.sample(xdata[1], t, signal_rk, self.TS))
[docs]
def conc(self, sum=True):
"""Concentrations in aorta and kidney.
Args:
sum (bool, optional): If set to true, the kidney
concentrations are the sum over all compartments. If
set to false, the compartmental concentrations are
returned individually. Defaults to True.
Returns:
tuple: time points, aorta blood concentrations, left
kidney concentrations, right kidney concentrations.
"""
t, cb = self._conc_aorta()
t, Clk, Crk = self._conc_kidneys(sum=sum)
return t, cb, Clk, Crk
[docs]
def relax(self):
"""Relaxation rates in aorta and kidney.
Returns:
tuple: time points, aorta relaxation rate, left kidney
relaxation rate, right kidney relaxation rate.
"""
t, R1b = self._relax_aorta()
t, R1_lk, R1_rk = self._relax_kidneys()
return t, R1b, R1_lk, R1_rk
[docs]
def predict(self, xdata: tuple) -> tuple:
"""Predict the data at given xdata
Args:
xdata (tuple): Tuple of 3 arrays with time points for
aorta, left kidney and right kidney, in that order.
The three arrays can all be different in length and value.
Returns:
tuple: Tuple of 3 arrays with signals for aorta, left
kidney and right kidney, in that order. The three
arrays can all be different in length and value but
each has to have the same length as its corresponding
array of time points.
"""
# Public interface
if self._predict is None:
signala = self._predict_aorta(xdata[0])
signal_lk, signal_rk = self._predict_kidneys((xdata[1], xdata[2]))
return signala, signal_lk, signal_rk
# Private interface with different input & output types
elif self._predict == 'aorta':
return self._predict_aorta(xdata)
elif self._predict == 'kidneys':
return self._predict_kidneys(xdata)
[docs]
def train(self, xdata: tuple, ydata: tuple, **kwargs):
"""Train the free parameters
Args:
xdata (tuple): Tuple of 3 arrays with time points for
aorta, left kidney and right kidney, in that order.
The three arrays can all be different in length and value.
ydata (tuple): Tuple of 3 arrays with signals for aorta,
left kidney and right kidney, in that order. The three
arrays can all be different in length and values but
each has to have the same length as its corresponding
array of time points.
kwargs: any keyword parameters accepted by `scipy.optimize.curve_fit`.
Returns:
Model: A reference to the model instance.
"""
# Estimate BAT and S0a from data
if self.sequence == 'SR':
Srefb = sig.signal_spgr(1, self.R10a, self.TC, self.TR, self.FA)
Sref_lk = sig.signal_spgr(1, self.R10_lk, self.TC, self.TR, self.FA)
Sref_rk = sig.signal_spgr(1, self.R10_rk, self.TC, self.TR, self.FA)
elif self.sequence=='SS':
Srefb = sig.signal_ss(1, self.R10a, self.TR, self.FA)
Sref_lk = sig.signal_ss(1, self.R10_lk, self.TR, self.FA)
Sref_rk = sig.signal_ss(1, self.R10_rk, self.TR, self.FA)
elif self.sequence=='SSI':
Srefb = sig.signal_spgr(1, self.R10a, self.TF, self.TR, self.FA)
Sref_lk = sig.signal_ss(1, self.R10_lk, self.TR, self.FA)
Sref_rk = sig.signal_ss(1, self.R10_rk, self.TR, self.FA)
elif self.sequence=='lin':
Srefb = sig.signal_lin(1, self.R10a)
Sref_lk = sig.signal_lin(1, self.R10_lk)
Sref_rk = sig.signal_lin(1, self.R10_rk)
n0 = max([np.sum(xdata[0] < self.t0), 1])
self.S0a = np.mean(ydata[0][:n0]) / Srefb
n0 = max([np.sum(xdata[1] < self.t0), 1])
self.S0_lk = np.mean(ydata[1][:n0]) / Sref_lk
n0 = max([np.sum(xdata[2] < self.t0), 1])
self.S0_rk = np.mean(ydata[2][:n0]) / Sref_rk
self.BAT = xdata[0][np.argmax(ydata[0])] - (1-self.Dhl)*self.Thl
self.BAT = max([self.BAT, 0])
# Copy all free to restor at the end
free = deepcopy(self.free)
# Train free aorta parameters on aorta data
self._predict = 'aorta'
pars = list(PARAMS_AORTA.keys())
self.free = {s: free[s] for s in pars if s in free}
ui.train(self, xdata[0], ydata[0], **kwargs)
# Train free kidney parameters on kidney data
self._predict = 'kidneys'
pars = list(PARAMS_KIDNEYS.keys())
self.free = {s: free[s] for s in pars if s in free}
ui.train(self, (xdata[1], xdata[2]), (ydata[1], ydata[2]), **kwargs)
# Train all parameters on all data
self._predict = None
self.free = free
return ui.train(self, xdata, ydata, **kwargs)
[docs]
def plot(self,
xdata: tuple,
ydata: tuple,
xlim=None, ref=None,
fname=None, show=True):
"""Plot the model fit against data
Args:
xdata (tuple): Tuple of 3 arrays with time points for aorta, left kidney and right kidney, in that order. The three arrays can all be different in length and value.
ydata (tuple): Tuple of 3 arrays with signals for aorta, left kidney and right kidney, in that order. The three arrays can all be different in length and values but each has to have the same length as its corresponding array of time points.
xlim (array_like, optional): 2-element array with lower and upper boundaries of the x-axis. Defaults to None.
ref (tuple, optional): Tuple of optional test data in the form (x,y), where x is an array with x-values and y is an array with y-values. Defaults to None.
fname (path, optional): Filepath to save the image. If no value is provided, the image is not saved. Defaults to None.
show (bool, optional): If True, the plot is shown. Defaults to True.
"""
t, cb, Clk, Crk = self.conc(sum=False)
sig = self.predict((t, t, t))
fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6)
) = plt.subplots(3, 2, figsize=(10, 12))
fig.subplots_adjust(wspace=0.3)
_plot_data1scan(t, sig[0], xdata[0], ydata[0],
'Aorta', ax1, xlim,
color=['lightcoral', 'darkred'],
test=None if ref is None else ref[0])
_plot_data1scan(t, sig[1], xdata[1], ydata[1],
'Left kidney', ax3, xlim,
color=['cornflowerblue', 'darkblue'],
test=None if ref is None else ref[1])
_plot_data1scan(t, sig[2], xdata[2], ydata[2],
'Right kidney', ax5, xlim,
color=['cornflowerblue', 'darkblue'],
test=None if ref is None else ref[2])
cb_lk = Clk[0,:] / (self.vp_lk/(1-self.H))
cb_rk = Crk[0,:] / (self.vp_rk/(1-self.H))
_plot_conc_aorta(t, cb, cb_lk, cb_rk, ax2, xlim)
_plot_conc_kidney(t, Clk, 'Left kidney', ax4, xlim)
_plot_conc_kidney(t, Crk, 'Right kidney', ax6, xlim)
if fname is not None:
plt.savefig(fname=fname)
if show:
plt.show()
else:
plt.close()
[docs]
def cost(self, xdata: tuple, ydata: tuple, metric='NRMS') -> float:
"""Return the goodness-of-fit
Args:
xdata (tuple): Tuple of 3 arrays with time points for aorta, left kidney and right kidney, in that order. The three arrays can all be different in length and value.
ydata (tuple): Tuple of 3 arrays with signals for aorta, left kidney and right kidney, in that order. The three arrays can all be different in length and values but each has to have the same length as its corresponding array of time points.
metric (str, optional): Which metric to use - options are:
**RMS** (Root-mean-square);
**NRMS** (Normalized root-mean-square);
**AIC** (Akaike information criterion);
**cAIC** (Corrected Akaike information criterion for small models);
**BIC** (Baysian information criterion). Defaults to 'NRMS'.
Returns:
float: goodness of fit.
"""
return super().cost(xdata, ydata, metric)
# Helper functions for plotting
def _plot_conc_aorta(t, cb, cb_lk, cb_rk, ax, xlim=None):
if xlim is None:
xlim = [t[0], t[-1]]
ax.set(xlabel='Time (min)', ylabel='Blood concentration (mM)',
xlim=np.array(xlim)/60)
ax.plot(t/60, 0*t, color='gray')
ax.plot(t/60, 1000*cb, linestyle='-',
color='darkred', linewidth=2.0, label='Aorta')
ax.plot(t/60, 1000*cb_lk, linestyle='--',
color='lightcoral', linewidth=2.0, label='Left kidney')
ax.plot(t/60, 1000*cb_rk, linestyle='-.',
color='lightcoral', linewidth=2.0, label='Right kidney')
ax.legend()
def _plot_conc_kidney(t, C, kid, ax, xlim=None):
if xlim is None:
xlim = [t[0], t[-1]]
ax.set(xlabel='Time (min)', ylabel=f'{kid} concentration (mM)',
xlim=np.array(xlim)/60)
ax.plot(t/60, 0*t, color='gray')
ax.plot(t/60, 1000*C[0, :], linestyle='-',
color='darkred', linewidth=2.0, label='Blood')
ax.plot(t/60, 1000*C[1, :], linestyle='-',
color='darkcyan', linewidth=2.0, label='Tubuli')
ax.plot(t/60, 1000*(C[0, :]+C[1, :]), linestyle='-',
color='darkblue', linewidth=2.0, label='Tissue')
ax.legend()
def _plot_data1scan(t: np.ndarray, sig: np.ndarray,
xdata: np.ndarray, ydata: np.ndarray,
roi, ax, xlim, color=['black', 'black'],
test=None):
if xlim is None:
xlim = [t[0], t[-1]]
ax.set(xlabel='Time (min)', ylabel=f'{roi} signal (a.u.)', xlim=np.array(xlim)/60)
ax.plot(xdata/60, ydata, marker='o',
color=color[0], label='Data', linestyle='None')
ax.plot(t/60, sig, linestyle='-',
color=color[1], linewidth=3.0, label='Prediction')
if test is not None:
ax.plot(np.array(test[0])/60, test[1], color='black',
marker='D', linestyle='None', label='Test data')
ax.legend()
PARAMS_AORTA = {
'dt': {
'init': 0.25,
'default_free': False,
'bounds': [0, np.inf],
'name': 'Forward model time step',
'unit': 'sec',
},
'tmax': {
'init': 120,
'default_free': False,
'bounds': [0, np.inf],
'name': 'Maximum acquisition time',
'unit': 'sec',
},
'dose_tolerance': {
'init': 0.1,
'default_free': False,
'bounds': [0, np.inf],
'name': 'Dose tolerance',
'unit': '',
},
't0': {
'init': 0,
'default_free': False,
'bounds': None,
'name': 'Baseline duration',
'unit': 'sec',
},
'field_strength': {
'init': 3.0,
'default_free': False,
'bounds': [0, np.inf],
'name': 'Magnetic field strength',
'unit': 'T',
},
# Injection
'weight': {
'init': 70,
'default_free': False,
'bounds': [0, np.inf],
'name': 'Subject weight',
'unit': 'kg',
},
'dose': {
'init': lib.ca_std_dose('gadoterate'),
'default_free': False,
'bounds': [0, np.inf],
'name': 'Contrast agent dose',
'unit': 'mL/kg',
},
'rate': {
'init': 1,
'default_free': False,
'bounds': [0, np.inf],
'name': 'Contrast agent injection rate',
'unit': 'mL/sec',
},
# Sequence
'TR': {
'init': 0.005,
'default_free': False,
'bounds': [0, np.inf],
'name': 'Repetition time',
'unit': 'sec',
'pixel_par': False,
},
'FA': {
'init': 15,
'default_free': False,
'bounds': [0, np.inf],
'name': 'Flip angle',
'unit': 'deg',
'pixel_par': False,
},
'TC': {
'init': 0.2,
'default_free': False,
'bounds': [0, np.inf],
'name': 'Time to k-space center',
'unit': 'sec',
'pixel_par': False,
},
'TS': {
'init': 0,
'default_free': False,
'bounds': [0, np.inf],
'name': 'Sampling time',
'unit': 'sec',
'pixel_par': False,
},
'TF': {
'init': 0.50,
'default_free': True,
'bounds': [0, 2],
'name': 'Inflow time',
'unit': 'sec',
'pixel_par': False,
},
# Kinetics
'BAT': {
'init': 60,
'default_free': True,
'bounds': [0, np.inf],
'name': 'Bolus arrival time',
'unit': 'sec',
},
'CO': {
'init': 100,
'default_free': True,
'bounds': [0, 300],
'name': 'Cardiac output',
'unit': 'mL/sec',
},
'Thl': {
'init': 10,
'default_free': True,
'bounds': [0, 30],
'name': 'Heart-lung mean transit time',
'unit': 'sec',
},
'Dhl': {
'init': 0.2,
'default_free': True,
'bounds': [0.05, 0.95],
'name': 'Heart-lung dispersion',
'unit': '',
},
'To': {
'init': 20,
'default_free': True,
'bounds': [0, 60],
'name': 'Organs blood mean transit time',
'unit': 'sec',
},
'Eo': {
'init': 0.15,
'default_free': True,
'bounds': [0, 0.5],
'name': 'Organs extraction fraction',
'unit': '',
},
'Toe': {
'init': 120,
'default_free': True,
'bounds': [0, 800],
'name': 'Organs extravascular mean transit time',
'unit': 'sec',
},
'Eb': {
'init': 0.05,
'default_free': True,
'bounds': [0.01, 0.15],
'name': 'Body extraction fraction',
'unit': '',
},
# Signal
'R10a': {
'init': 0.7,
'default_free': False,
'bounds': [0, np.inf],
'name': 'Aorta precontrast R1',
'unit': 'Hz',
'pixel_par': False,
},
'S0a': {
'init': 1.0,
'default_free': False,
'bounds': [0, np.inf],
'name': 'Aorta signal scaling factor',
'unit': 'a.u.',
'pixel_par': True,
},
}
PARAMS_KIDNEYS = {
# Both kidneys
'H': {
'init': 0.45,
'default_free': False,
'bounds': [1e-3, 1 - 1e-3],
'name': 'Tissue Hematocrit',
'unit': '',
},
'RPF': {
'init': 20,
'default_free': True,
'bounds': [0, 100],
'name': 'Renal plasma flow',
'unit': 'mL/sec',
},
'DRPF': {
'init': 0.5,
'default_free': True,
'bounds': [0, 1],
'name': 'Differential renal plasma flow',
'unit': '',
},
'DRF': {
'init': 0.5,
'default_free': True,
'bounds': [0, 1.0],
'name': 'Differential renal function',
'unit': '',
},
'FF': {
'init': 0.10,
'default_free': True,
'bounds': [0.0, 0.5],
'name': 'Filtration fraction',
'unit': '',
},
# Left kidney
'Ta_lk': {
'init': 0,
'default_free': True,
'bounds': [0, 3],
'name': 'Left kidney arterial mean transit time',
'unit': 'sec',
},
'vp_lk': {
'init': 0.15,
'default_free': True,
'bounds': [0, 0.3],
'name': 'Left kidney plasma volume',
'unit': 'mL/cm3',
},
'Tt_lk': {
'init': 120,
'default_free': True,
'bounds': [0, np.inf],
'name': 'Left kidney tubular mean transit time',
'unit': 'sec',
},
'R10_lk': {
'init': 1/lib.T1(3.0, 'kidney'),
'default_free': False,
'bounds': [0, np.inf],
'name': 'Left kidney tissue precontrast R1',
'unit': 'Hz',
},
'S0_lk': {
'init': 1.0,
'default_free': False,
'bounds': [0, np.inf],
'name': 'Left kidney signal scaling factor',
'unit': 'a.u.',
},
'vol_lk': {
'init': 150,
'default_free': False,
'bounds': None,
'name': 'Left kidney volume',
'unit': 'mL',
},
# Right kidney
'Ta_rk': {
'init': 0,
'default_free': True,
'bounds': [0, 3],
'name': 'Right kidney arterial mean transit time',
'unit': 'sec',
},
'vp_rk': {
'init': 0.15,
'default_free': True,
'bounds': [0, 0.3],
'name': 'Right kidney plasma volume',
'unit': 'mL/cm3',
},
'Tt_rk': {
'init': 120,
'default_free': True,
'bounds': [0, np.inf],
'name': 'Right kidney tubular mean transit time',
'unit': 'sec',
},
'R10_rk': {
'init': 1/lib.T1(3.0, 'kidney'),
'default_free': False,
'bounds': [0, np.inf],
'name': 'Right kidney tissue precontrast R1',
'unit': 'Hz',
},
'S0_rk': {
'init': 1.0,
'default_free': False,
'bounds': [0, np.inf],
'name': 'Right kidney signal scaling factor',
'unit': 'a.u.',
},
'vol_rk': {
'init': None,
'default_free': False,
'bounds': None,
'name': 'Right kidney volume',
'unit': 'mL',
},
}
PARAMS_DERIVED = {
# Derived parameters
'GFR': {
'name': 'Glomerular Filtration Rate',
'unit': 'mL/sec',
},
'RPF_lk': {
'name': 'Left kidney plasma flow',
'unit': 'mL/sec',
},
'GFR_lk': {
'name': 'Left kidney glomerular filtration rate',
'unit': 'mL/sec',
},
'Fp_lk': {
'name': 'Left kidney plasma flow',
'unit': 'mL/sec/cm3',
},
'Tp_lk': {
'name': 'Left kidney plasma mean transit time',
'unit': 'sec',
},
'Tv_lk': {
'name': 'Left kidney vascular mean transit time',
'unit': 'sec',
},
'Ft_lk': {
'name': 'Left kidney tubular flow',
'unit': 'mL/sec/cm3',
},
'FF_lk': {
'name': 'Left kidney filtration fraction',
'unit': '',
},
'E_lk': {
'name': 'Left kidney extraction fraction',
'unit': '',
},
'RPF_rk': {
'name': 'Right kidney plasma flow',
'unit': 'mL/sec',
},
'GFR_rk': {
'name': 'Right kidney glomerular filtration rate',
'unit': 'mL/sec',
},
'Fp_rk': {
'name': 'Right kidney plasma flow',
'unit': 'mL/sec/cm3',
},
'Tp_rk': {
'name': 'Right kidney plasma mean transit time',
'unit': 'sec',
},
'Tv_rk': {
'name': 'Right kidney vascular mean transit time',
'unit': 'sec',
},
'Ft_rk': {
'name': 'Right kidney tubular flow',
'unit': 'mL/sec/cm3',
},
'FF_rk': {
'name': 'Right kidney filtration fraction',
'unit': '',
},
'E_rk': {
'name': 'Right kidney extraction fraction',
'unit': '',
},
}
def _div(a, b):
with np.errstate(divide='ignore', invalid='ignore'):
return np.where(b == 0, 0, np.divide(a, b))